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Nonlinear Parametric Oscillations in 
Certain Stochastic Systems: 
A Random van der Pol Oscillator 
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A stochastic model for some class of nonlinear oscillators, which includes a van 
der Pol-type oscillator with random parameters, is analyzed in the diffusion 
limit. That is, small random fluctuations and long time are considered, whiIe the 
nonlinearity is also assumed to be small. We show that there exist stationary dis- 
tributions, independent of the phase of the oscillator, a result proved earlier by 
R. L. Stratonovich assuming the random perturbations of the frequency to be 
delta correlated. The time behavior of the moments of the displacement of the 
oscillator from its rest position is also investigated and the results are compared 
with the corresponding ones for the linear random oscillator. A numerical study 
is also performed for the first two moments and plots are given. 

KEY WORDS:  Nonlinear random oscillators; van der Pol oscillator; initial- 
value problems for stochastic ordinary differential equations; numerical treat- 
ment of boundary-value problems for linear singular parabolic differential 
equations. 

1. INTRODUCTION 

An oscillator is a physical system where the oscillatory behavior, i.e., essen- 
tially the periodic behavior of some quantity, is the main feature. This 
includes such mechanical and electrical systems as pendulums, clocks, 
vacuum-tube devices, or just a particle performing a periodic motion 
around its rest position, subject to some restoring forces. Indeed, the 
atomic oscillator is one of the simplest examples, which is quite familiar to 
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all physicists. To engineers, oscillator is a synonym of a circuit designed to 
generate sine waves (or other wave forms) for a variety of purposes such 
as, for instance, producing the carrier frequency in radio communications. 

The oscillatory behavior referred to above may represent a wanted 
and valuable effect or also a parasitic or harmful one. 

In the simplest case of systems with only one degree of freedom, the 
relevant mathematical description requires studying initial-value (IV) 
problems for second-order ordinary differential equations (ODE's). 

In order to have "self-excited" (i.e., some kind of self-sustained) 
oscillations, say in some given electrical circuit, one is led to study certain 
classes of nonlinear second-order ODE's: for instance, the nonlinearity 
represents the saturating limiting effect, due to the device itself which, on 
the other hand, produces and amplifies some voltage or current (see Ref. 9, 
for example). 

In general, some or all of the parameters of the system, i.e., of the coef- 
ficients of the ODE, are time dependent. This fact is referred to by saying 
that we are considering parametric systems (cf. Ref. 10, p. 277). 

On the other hand, even small random fluctuations in the parameters, 
accumulated over long intervals of time, are important, in that they may 
change radically every situation for which a deterministic analysis predicts 
stability or instability. For example, referring again to the case of a 
vacuum-tube circuit, one may wish to take into account the effects of inter- 
nal shot noise or that of externally applied random excitations. 

In this paper we study free self-excited oscillations in certain nonlinear 
parametric systems with random parameters. They include a stochastic ver- 
sion of the classical van der Pol oscillator. It is when the characteristic of 
the vacuum tube is cubic that we are led to study the van der Pol equation, 
with various forms for the random coefficients (see, e.g., Ref. 10). 

For generalities about linear random oscillators see, e.g., Refs. 1 and 6. 
For the sake of generality, we shall consider the IV problem 

y+"+ 2e212(t) + v(t) w(y~) 2] y+'+ ~o2[1 + e#Ct)] 

y'(O) = y~, y ( O )  = Y2 

y~=O 
(1.1) 

where y" is real valued, e > 0 is a small parameter, w is a real parameter 
which sizes the nonlinearity, ~Oo is the radian frequency of the (unpertur- 
bed) oscillator; 2(t), /~(t), v(t) are suitable stochastic processes on some 
probability space. 

This equation includes the classical deterministic van der Pol oscillator 
[ 2 ( t ) -  -1 ,  v( t )w-1 ,  #( t ) - -0] ,  while by replacing (yZ)2 by (yd)2 we get 
the classical Rayleigh oscillator. 
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It is convenient to introduce the van der Pol variables p~(t), ~b~(t), 
defined by 

y~ = p~(t) cos[cOot + ~ ( t ) ]  

y~'= -coop~(t) sin[cOot + ~b~(t)] 
(1.2) 

so that equation (1.1) can be rewritten in the form 

p~'= ~ ? P ~tt(t) sin(2co0 t + 2~b ~) 

W e2 - -e2pe{v( t )~p[ l+cos(2coot+20~)]+2( t )}  

x [1 -- cos(2coot + 2~U)] 

~ e' ~ coO 
~ -  #(t)[ 1 + cos(2co0 t + 2~b ~) ] 

~2 ~v(t) W e2v ~PL 

(1.3) 

1 + cos(2co0 t + 2~b~)] + 2(0} sin(2coot + 2~b ~) 

with p~(O) = (y2 + coo2y~)1/2, ~(0)  = -arctan(y2/coo Yl). 
We write, for short 

l p~' = eFt(t; Y,  0 ~) + e2Gl(t; p~, ~)  

~'  = eF2( t; p~, 0 ~) + e2G2(t; p~, ~U) 
(1.4) 

In Section 2 we state the main hypotheses on the processes 2, #, v and 
compute the infinitesimal generator for the limiting process to which the 
process (p~, q~) converges, in some sense. Therefore, the Fokker-Planck 
and the Kolmogorov backward equations for such a limiting process are 
readily obtained. With such equations at hand, we prove the existence of 
nontrivial stationary distributions, independent of phase (Section 3): This 
result was proved earlier by Stratonovich, assuming the random pertur- 
bation of the frequency to be a delta-correlated process, as an 
approximation of a stochastic process with small correlation time (Ref. 10, 
pp. 302-305). 

The time evolution of the moments of the displacement of the 
oscillator from its rest position is also studied (Section 4): We first discuss 
existence, uniqueness, and obtain some estimates from the backward 
equation, by using the Feynman-Kac formula. Finally, in Section 5, we 
perform a numerical study of the first two moments. 

822/41/1-2 12 -~" 
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2. A S Y M P T O T I C  S T A T I S T I C A L  A N A L Y S I S  

We assume that 2(0, #(t), v(t) in (1.3) are real-valued stochastic 
processes on some probability space (O, ~ ,  P) almost surely bounded, 
wide-sense stationary and such that E{2(t)} =7, E{~t(t)} =0,  E{v(t)} = 
Vo > 0, E{~t(t)#(s)} = R(It :-sl). Here E{.} means taking expected values, 
that is integration over f2, with respect to the measure P, and R( ' )  is the 
correlation function of #(t). The process ~t(t) is supposed to satisfy a strong 
mixing condition, with mixing rate decreasing to zero sufficiently fast (cf. 
Refs. 5 and 7). 

Under these conditions, it is possible to carry out an asymptotic 
analysis of system (1.3), which allows us to compute various statistics of 
the solution (p"(t), C~(t)) and therefore of y~(t). In fact, a limit theorem due 
to Khas'minskii (s~ ensures that, for every t o > 0 ,  the process 
(p~(e2t), C~(g2t)) converges weakly, as e --+ 0, t ~ +oo with e2t = const, (dif- 
fusion limit), on the interval 0~<g2t<Zo, to a Markov process, say 
(p(g2t), C(g2t)). Moreover, this process turns out to be continuous with 
probability 1, and with infinitesimal generator 

2 ,q2 2 0 
L= ~ a , j ( z ) ~ +  ~ ~ [b,(z)+G(z)]oz-~ (2.1) i,j=l i = 1  

where z := [pC] r, and the diffusion matrix {a0.(z)} and the drift vector 
Ibm(z) + ci(z)] r are given by 

a0.(z ) = lira t 1 to+t E{Fi(s, z) Fj(a, z)} ds da 
t ~  + ~  0 0 

b i ( z )  l i r a  t lfj~ I ~, {fj } = E (s, z) --0Fi(a '  z) 
, ~ +o~ o j=  I Ozj 

G(z)= lim t l ! j~  ( i = 1 , 2 )  
t ~ + o o  0 

( i , j =  1, 2) 

ds da (2.2) 

Remark 2.1. We observe that F~, G~ and their first two derivatives 
with respect to z i do not satisfy the boundedness condition which was 
assumed in the original formulation of Khas'minskii's theorem. However, 
this theorem still holds true as long as the problem (2.9) below has a uni- 
que solution: a~j, b~, ci can be unbounded provided that the limiting process 
has infinite explosion time with probability 1 (cf. Ref. 8). 

with Fi(s, z) - Fi(s; p, C), Gi(s, z) - Gi(s; p, C). The integrals in (2.2) are 
supposed to exist uniformly in to and z. 
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Evaluating au, bi [by using the assumptions made on #(t)] is rather 
lengthy though elementary. We obtain 

b 2 c b 
all = ~ P  , a~2 = - a z 1 = ~ P ,  a 2 2 = a + ~  (2.3) 

3 
bx =-~ bp, b2 = c (2.4) 

where we set 

~g S(O), a----~- 
(D 2 

- ~ I m  (2.5) b = -~  Re S(2r c = S(2~Oo) 
~ 4  

L 
oo 

S(x) =- R(~) e ixr d~ (2.6) 

2S(x) being the power spectral density of #(t). We observe that aij, bi are 
not affected by the nonlinearity, in this model. 

Computing the ei's, we get 

W 
c1= - y p - ~ v o p  3, C2~---0 (2.7) 

Therefore 

w 

With this operator at hand, we are able to describe the time evolution 
of the expected value of any (bounded) continuous function Q(p, O) of the 
limiting process (p, ~), and that of the transition probability density of the 
solution, in the limit described above. In fact, these are given by the 
backward equation 

8U 
& L[U]  

(3 w ~) aV 
2bp2 02U~p 2 -[- b -  7 - ~  vop p--sp (2.9) 

b) 02U OU + a+~ -~+c-~ 

u I~=o = O(p, O) 
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where z - e2t, and by the forward or Fokker-Planck equation 

OP 
- - = L * [ P ]  

=20p2(P2P)- -~p  b - 7 - - ~ v o P  2 pP 

( I) 
+ a +  V 

P(P, O; O) = 6(p - p(O)) 6(r - ~b(O)) 

(2.10) 

respectively. L* denotes the adjoint of L. 
It will be useful sometimes to use the variables (r, ~b), with p = e  r, 

instead of (p, ~b). In these coordinates (2.9), (2.10) take on the form 

c3z 2~3r 2+  b - Y - 4  v~ 
- 7-;.+ 

u t~=o = q(r, @) (2.9') 

where u(r, ~; r) - U(e ~, ~; z), q(r, ~) - Q(Z, 0), and 

@ b O2p ( WVo )@ ( b)O2p 
0~-2~r2+ 7+Te2r ~+ a+~ 0~ ~ 

_ @ 3 WVoe2r ) c ~-~ + ( 7 - ~ + ~  p 

p(r, (J; O) = 6(r - r(O)) 6(~b - ~b(O)) 

(2.10') 

The advantage of using the coordinates (r, ~b) is that in the linear problem 
(w = 0) the operator L has constant coefficients. 

Remark 2.2. We observe that the operator defined in (2.8) can be 
written 

L = L p + L ~  (2.11) 

where Lp does not depend on ~b and L~ does not depend on p. The 
probabilistic interpretation of this splitting up of the infinitesimal generator 
is that the two-dimensional Markov process generated by L actually con- 
sists of two independent one-dimensional Markov processes. 
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3. S T A T I O N A R Y  D I S T R I B U T I O N S  

A meaningful and important question in the theory of oscillations is to 
determine whether there exist stationary (i.e., equilibrium) solutions, that is 
nontrivial solutions which, eventually, will not vary any more in time. We 
turn this question to the statistics of the solutions. Stationary distributions 
are known not to exist in the corresponding linear problem, w = 0. 

Therefore, we set formally O/& = 0 in (2.10), and consider the elliptic 
equation thus obtained: 

b 0 2 0 _ _ ~ v o p ) p p ~  ] 

+ a+g - ~ - - c - - ~ - = 0  (3.1) 

As the coefficients of the operator acting on P ~  do not depend on ~b, 
we may look for solutions depending only on p: The so-obtained equation 
is still affected by the nonlinearity. This occurrence is due to a possible 
competition "between 2(t) and v(t)w(y~) 2'' in the original equation (1.1). 
Equation (3.1) reduces therefore to 

dp ~ (p~P~)- 3 

which has the general solution 

2 7 w v ~  ] 
b 2b p2 pp~ = 0  (3.2) 

Poo(p) =k ip  ~ le-"P2/2 fOP 

where we set 

~-(~+l)e"r le-I"'J2~P2 (3.3) 

~-=2 1 -  , r / -  2b 

and kl,  k2 are two constants to be determined. Note that c~ ~ 0 for 7 >/< b, 
and r/ ~ 0 for wv o ~ O. It is lengthy but elementary to show that k 1 must 
vanish: If we set P ~ ( p ) -  kl y~(p)+ k2 Yz(P), in fact, it is possible to prove 
that, otherwise, k I y~(.)q~L(R +), whichever the sign of c~, t /may  be (zero 
included). Moreover, k 2 Y2(') ~ L(R +), as is required, only for ~ > 0 (i.e., 
?/b < 1) and r/> 0. We compute k2 from the normalization condition 

fo ~Poo(p)clp=k2 pl 2#% (wvo/4b)~,2dp=l (3.5) 
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We get 
2 (WVo~ 1-'/b 

k2 = F(1 - y / b ) \  4b J 
and therefore 

2 (WVo']l-'/bpl 2~/aexp[_(WVO) p2], 
Poo(P)- F(1 --7/b) \ 4b J \ 4 b J  

(3.6) 

p e R  + 

(3.7) 
(cf. Ref. 10, p. 304). 

We now discuss the meaning of the sign of c~, 7, i.e., the physical inter- 
pretation of the conditions e > 0, q > 0. 

The effect of the randomness, which enters the problem through the 
parameter b > 0 is to let the mean-square displacement of the oscillator 
blow up. A similar effect is produced by the amplification or "negative 
resistance" due to the system, whenever 7 < 0 (y > 0 represents a damping). 
Note that condition c~ = 2 ( 1 -  y/b)>0 is in particular satisfied when 7 ~<0 
(recall that for the classical deterministic van der Pol oscillator 7 = -1) .  

On the other hand, there is a feedback mechanism, due to the non- 
linearity of the system, that stabilizes the growth of the oscillations, 
providing a saturation. 

Therefore a competition is possible among all these phenomena. 
Without this, no stationary solution can exist: There are stationary 
solutions if and only if there is an actual, effective competition. In par- 
ticular, the linear random oscillator (r/= 0) has no stationary solutions as 
was known. If b ~< y, on the other hand, there is no parametric excitation, 3 
and therefore no stationary solutions. 

Y A = 3 - 2 ~ ,  

4. T H E  T I M E - D E P E N D E N T  P R O B L E M  

We now turn our attention to the study of the time-dependent 
solutions of (2.9) [(2.9')]. As such systems are linear and have coefficients 
depending only on p (on r), we can carry out a Fourier analysis with 
respect to r reducing their study to that of the time evolution of single har- 
monics. 

More specifically, we shall discuss system (2.9), for the quantity 
U(p, r z). Setting 

2a 2c 
B = I + - -  C = - -  

b '  b 

b 
T I ~ T  

3 Indeed,  b > ?, is referred to as the condition for parametric excitation; cf. Ref. 10, p. 304. 

(4.1) 
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(2.9) becomes 

~U 2 82U 2 8U ~2U OU 
~zl =p '~P 2+(A-~lp ) P ~ P + B - ~ + C  8--~ (4.2) 

U(p, ~; o) = Q(p, ~) 

with 17 defined in (3.4). We used the same notation for the function U, after 
changing ~ into ~l. 

Expanding U, Q in Fourier series with respect to ~, 

+oo +c~ 
U(p, r "171)= E Urn(P, Z'l) eimO, Q(p, ()) = ~ Qm(p) eimr 

m - -  -- ~'~ m =  -- oo 

(4.3) 

we get from (4.2) 

( ~ U m  = p 2  O 2 U m  O U m  + B,,, U,,,, 0 < p < 0% z t > 0 8z I --~p 2 + ( A - t l p 2 ) p  Op 

Urn(p, O) = Qm(P), 0 < p < oo (4.4) 

where 

O m = - m 2 B +  imC (4.5) 

We shall consider, typically, Q(p, ~)=p%ikr or Q(p, q~)=pk for a 
f ixed k, k = 1, 2 ..... Therefore 

{O k for m = k  (k fixed = l, 2,...) (4.5') 
Qm(P) = for m # k  

o r  

{O k for m = O  ( k f i x e d = l ,  2,...) (4.5") 
Qm(P)= for m ~ O  

respectively. In fact, our main goal is to evaluate the moments 

EpoEPk(T1) e iko(r = Uk(po, "i~l), k = 1, 2 (4.6') 

o r  

Epo[pk(rl)] = Uo(Po, Zl), k = 1, 2 (4.6") 

In (4.6") we used a different notation for the solution of (4.4) with con- 
ditions (4.5"), for convenience. 
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Note that, by Remark 2.2 and (4.6'), (4.6"), 

Uk(Po, 1:1)= Epo[Pk('rl)] Eo0[e~+~**}] = Uo,k(Po, T1) E4oEe*k~{*z)] (4.7) 

On the other hand, from (4.2) follows that the process p satisfies the It6 
equation 

dp = (a - qp2)p d~  + x f2  p dfl(r~) (4.8) 

/~(') being the one-dimensional standard Brownian motion. The process ~b 
is a Brownian motion itself, with drift, satisfying the It6 equation 

d(J = C dr~ + (2B) 1/2 dfl(Vx) (4.9) 

Therefore [cf. formula (4.23) below] 

E~0[e ~k~(~)] = e~k~oe (~kc- ~k2)~l (4.10) 

and from (4.7) 

Uk(po, r l ) =  Uo,k(Po, rl)  eik*~ Iikc ~k2)~1 (4.11) 

In particular, we get 

[ U~@o, ~1)1 = I Uo,~(po, ~,)l  e-k2B~t (4.11') 

It follows that it will not be necessary to consider the problem (4.4) for 
Uk, but only that for U0,k. 

As only the one-dimensional Markov process p needs to be studied in 
detail [cf. Remark2.2 and (4.8), (4.9)], it is natural to invoke Feller's 
theory of one-dimensional diffusion. ~2~ 

It is convenient to consider the "transformed" process r = log p, gover- 
ned by 

dr=(~-~e2r )  dTl+x/-2dfl(~l),  c ~ = A - 1  (4.12) 

It is easy to check that the boundary r = -oo  (p = 0) is a natural boundary, 
in the terminology introduced by Feller (see Ref. 2, pp. 487, 516), 
whichever the sign of c~ and ~ is. On the other hand, the boundary r = + oe 
(p=  +oo) is an entrance boundary when 0 > 0  (for any~), and an exit 
boundary when tl < 0 (for any ~). 

Therefore, when t 1 > 0 the backward equation has a unique solution, 
but in the corresponding forward equation uniqueness is lost. The converse 
happens when q < 0. Compare also the necessary and sufficient condition 
for uniqueness given by Hille. ~ 
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Note that, when ~/< 0 the (limiting) process explodes in finite time, 
with probability 1. Therefore its moments cannot be defined and, afortiori, 
convergence of the moments of y~ to those of y becomes meaningless (cf. 
Ref. 8, p. VI- 13, Remark 2). 

By setting Uo,~-P%o,k, equation (4.4) with m = k, together with the 
IV (4.5"), 

OUo,~ 2 02Uo.k OUo,k 
0~1 - P  --~p 2 + ( A - ~ p 2 ) p  Op (4.13) 

Uo,k(p, O) = pg 

can be transformed into one with a constant IV. This can be useful for both 
numerical and analytical purposes. We obtain 

OVo,k 2 02Vo,~ . ,-- ~Vo,k 
- p -~p2 + i n  + 2 k -  qpZ)p--~-p + k(A + k -  l - tlp 2) vo,k 

Vo.,( p, 0)=  1 (4.14a) 

We shall use system (4.14a) in Section 5, for numerical purposes. Here 
we perform an additional transformation on such a system, rewritten in 
coordinates (r, ~1), i.e., 

0/)0,k (~VO'k - -  (~2VO'k t- (A + 2k - 1 - ;Te 2r) ~ -[- k(A + k - 1 - qe 2r) Vo,k 2 

Vo,k(r, 0 ) =  1 (4.14b) 

where we wrote Vo.k(r, "(1) for Vo,k(e r, rl)  , for short. 
We want to state, at this point, existence, uniqueness and some 

estimates for the solution to problem (4.14b), when t/~> 0. Note that such a 
problem involves a partial differential equation over an unbounded domain 
and with rapidly increasing coefficients, while (4.14a) is also degenerate at 
p = 0 .  This program will be carried out by using the celebrated Feyn- 
man-Kacformula (cf. Ref. 4, e.g.). 

Changing v0, k into Vo.k, with 

Vo,k(r, T1) = p(r, tl) Vo,k(r , T1) , 

where 

p(r, t / ) - e x p  ( - - ~ - r + ~  6gk ' t le2r) (4.15) 

6~k=A + 2 k - -  1 (4.16) 
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in (4.14b), we get 

where we set 

OVo,k I (~2Vo, k 

~"g2 2 8r 2 
- -  + P( r ,  q)  Vo, k 

1 
Vo,k(r, O)=p'r,t q) 

=exp(- -~r-4e2r  ) 
(4.17) 

-c 2 = -  2 . c  I 

(4.18) 
P(r, tl)= -~[~12ear-z(A + 1) qe2r+ (A -- 1) 2] 

Now, P(r, 31) is bounded from above: 

A 
P(r, q)<~-5 (4.19) 

as is immediately seen. Therefore the solution Vo,k to (4.17) can be 
represented by the Feynman-Kac formula 

(4.20) 

where fl(') denotes the one-dimensional Brownian motion on [0, + oo), 
starting from fl(0)=r, and Er{'} means taking expected values with 
respect to the Wiener measure. The superscript "NL" stresses the fact that 
we are considering the nonlinear problem (t/>0). In the corresponding 
linear problem, t/= 0, we have 

p(r, 0) = exp( -- ggkr/2), P(r, 0) = -- I(A -- 1 )2 = t5 (4.21) 

and therefore the explicit result 

=Er  {exp [ ~ f l ( % ) ] }  ep~2 

= e x p ( ~ r )  e x p I ( - ~ + / ~ ) % ]  (4.22) 

Here "L" stands for linear and we used the formula 

Ex  { e hB(O } = ehxeh2t/2 (4.23) 

valid for any constant h. 
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From (4.20), (4.18), and (4.21) we get 

~gk tl 

{ ~ ;: 1t x exp - g tl eZP(')[tle 2r 2(A + 1)] ds 

For t 1 >~ 0 we get the estimate 

O<~V~N,~(r, 2)<~ef~2Er{eXp[-~fi(~z)]}exp[~(A 

= exp (~--~k r )  exp [ ( ~  + 4A) 8 1  

as --~tleZx[tle2X--2(A+l)]<<.~(A+l)2, and using 
Therefore 

O~ NL )~<exp(~---Akr) [ 4 ]  V~,k(r, ~1 exp (6g~+4A) 

Recalling (4.22), we may also write 

+ 1)2921 

formula 

187 

(4.24) 

(4.25) 

(4.23). 

(4.26) 

v~k( r, "c l ) = exp I ( 2P + -~-) "c l 1 

= exp[k(A + k -  1) ~1] (4.29) 

Finally, it can be useful to compare Vo, kNL with v Lo,k.'4 

Vo,k (r, ~1) <~ rl exp 4 zl (4.30) 

4 B. White pointed me out that, starting from (4.8), the estimate (4.30) could be improved by 
,NL L getting Vo, k ~< v0, k. 

Similarly, we get 

0~< NL )~<V},k(r,%)ex p [ (A+.  1) 2 ] V~ "q [ 4  rl (4.27) 

Going back to NL VL V0.k, o,k, we obtain from (4.15) and (4.26) 

o.<.>..,.~e~p (~ e~r) ex~ 72+ 4~, 4] ~42~, 
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Observe that (4.29) can be derived directly from (4.14b) with ~ = 0: as 
the IV as well as the coefficients are independent of r, looking for solutions 
also independent of r, we just have to solve 

3v~ - k(A + k - 1) 1)o,k, 1)o,k(r, 0) = 1 

which gives (4.29), as 

6~2=k(A +k_  l) 2 P + -  T 

recalling (4.21)and (4.16). 
We make some comments, finally, about the (time) growth rates of 

Uk(po, "1), as by (4.11') 

k I) ) e k2B'cl IUk(po, ' 1 ) 1  =Po O,k(Po, "1 

In the linear case, recalling (4.29) and (4.1), we get 

k(A + k - 1 ) - k 2 B =  - k [ k ( B - 1 ) - ( A - 1 ) ]  

(4.31) 

For some k, k =  1, 2 ..... we may have growth, but certainly for k large 
enough there will be decay. When, e.g., a + 7 ~> b, we have decay for all 
k = 1, 2, 3 ..... This condition is satisfied, for instance, when 7 ~> 0, as a >~ b, 
but also for 7<0 ,  [ 7 [ < a - b .  In any case we get the bound 
(1 /4 ) [ (A-  1)2/(B - 1)] = (b/2a)(1-~//b) 2 for all the growth rates: 

0 ~< roCk(r, ,1) ~<exp 1 -  * l ,  k = 1 , 2 , 3  .... (4.32) 

rate 
Similarly, in the nonlinear case we have, from (4.30), the time growth 

�88 + 1 )2 + linear growth rate 

the linear growth rate being given by (4.31). Therefore it is estimated by 

( A + I )  2-i ~-- 
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uniformly, in k, k = 1, 2, 3,.... Therefore we obtain 

(4) Vo,k(r, r~) ~<exp e 2' 

x exp {[1 + 2 (1 - b )  + (1 + b ) ( 1  - b ) a ]  v~} (4.33) 

uniformly in k, k = 1, 2, 3 ..... 
It is also possible to obtain estimates for the derivatives ~ NL evo,k/Or, 

2 N L  2 N L  NL where NL-- Vo,~/Or, or Vk.r, V k .... Vk = Uk/p k, the solution to (4.4), (4.5'), 
m = k [cf. (4.51)]. We describe the procedure and omit the details. By dif- 
ferentiating in (4.14a), we obtain a system for NL OVo, k (r, rl)/#r. The equation 
here will be inhomogeneous, but the inhomogeneity term will depend only 

NL and this, in view of (4.28), can be considered as "known" for the on /)0,k , 
purpose of estimating NL ~Vo,k/Or. The IV is zero. Then we represent the 
relevant Green's function for the corresponding homogeneous problem by 
means of the Feynman-Kac formula, and obtain therefore the solution to 
the full inhomogeneous problem as well. It results in the estimate for l)k, rNL, 

ivk, r ( r ,~l ) l~<clex p e2r+2r eC2~t(l_e ~3~) (4.34) 

where 

c ~ - 2 ( k +  1), C2~- + 2  - ( A + k 2 B - 2 ) ,  c 3 ~ 4 ( k +  1) 

(4.35) 
6g k being defined in (4.16). 

By proceeding in a similar way, we can derive an estimate for NL Uk,rr a s  

well: 

lVk,rr(r, rl)l ~< 4q exp e2r + 2r e x p { - [ 3 ( A - 1 ) + k 2 B - 9 ] z l }  

Ik_~_e2r(ea'2_-I e a2"2- 1'~ _ (e a3~1- 
\ dl "d~ ) + x  d3 1)3 (4.36) X 

1 _ ~  

where we set, for short, 

(A - 1) 2 
dl = - -  ~ - 2 ( k + 4 ) ( A -  1 ) + 2 k 2 +  12k+ 8 

2 
1 

d2 = dl - c 3 = ~ (A - 1)2 + 2(k + 4)(A - 1) + 2k 2 + 8k + 4 (4.37) 

1 )2 d 3 = - ~ ( A -  1 + 2 ( k + 3 ) ( A - 1 ) + 2 k 2 + 4 k - 4  
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The estimates (4.34), (4.36) show, in particular, that NL N L  Uk, r (r ,  271), 271 
are infinitesimal as r--* - ~ ,  for ~1 e [0, T], VT> 0. 

5, NUMERICAL TREATMENT 

In this Section we describe the results of the numerical treatment of 
equation (4.14a) that we performed to obtain the time behavior of the first 
two moments of the displacement of the oscillator corresponding to the 
model equation (1.1). 

Equation (4.14a) actually describes the time evolution of the moments 
of the limiting process, and we shall consider them as an approximation of 
the former quantities. 

In order to carry out the computations in practice, we must choose a 
correlation function, for example, the exponential 

R(~) = R o e x p ( -  [~1/~o) (5.1) 

where {o > 0 represents some correlation time. Then the power spectral den- 
sity can be obtained from (2.6): 

S ( x )  = 

and therefore, from (2.5) we get 

Ro ~o(1 + ixr 

1 + X2~o ~ 

a=coZR~176 b co~ Ro~o CO22(Ro~o)(COo~o) 
- -  2 2 ~ C ~  4COo~o 4 l+4COo~ o 4 1+  2 2 

We need only the nondimensional quantities 

a e 
- = 1 + (2COo{o) 2, ~ = 2COo{o 
b 

7 8 7 1 +(2coor 2 wv o 

b Ro COo 2COo~o ' q = 2---b- 

(5.2) 

However, the only independent parameters to be assigned are COo~ o, 7/coo, 
Ro, and t/. Also the IV p (0 )=  Po and e must be considered as parameters: 
As for the latter, observe that there are two time scales, according to the 
times t and 271 =- (b/2) e2t. 

In handling numerically systems such as (4.14a), we notice that they 
should be integrated over an unbounded domain ~ . r - -  {(P, 271): 0 < p < oe, 
0 < 271 < T}. In practice, of course, we have "to cut" such a domain, to get a 
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bounded one, say ~p . . . .  T = { ( , O , ' C l ) :  0 < p < p  . . . .  0 < r l < T } .  An 
additional boundary condition is thus required at p = Pmax' In order to get 
such a condition, we exploit the symmetry of both the equation and the IV 
in (4.14a). This implies that 

~VO'k p =0 ap =0 (5.3) 

provided that limo~o+ OVo,k/Op exists. Indeed, cf. (4.34), recalling that 
p = e  r. Moreover, as changing p into a, cr= l/p, takes system (4.14a) into 

3Vo,k 2~32Vo,k I + t / ]  ~Vo,k ~?.c I = a --~2 + 2 - A - 2k -~ ~ Oa 

+ k ( A + k - 1 ) - ~  Vo .k ,  0 < a < o %  z1>0  (5.4) 

Vo, k ( 1 , 0 )  = 1, 0 < a < o o  

if we assume Vo,k to be differentiable at ~r = 0 (i.e., at p = oo), we obtain, 
again by symmetry, the boundary value OVo,g/~a ]o-o = 0. We impose such a 
condition on the "artificial" boundary p =/)max: 

0v0,k ~ = 0  (5 .5)  
cop = ~ m ~  

Then we solve numerically system (4.14a), completed by conditions 
(5.3), (5.5). The final goal is to compute 

Epo{Y(t)} = Po Re{v~(po, r~)} cos COot 

- P o  Im{vl(po, ~1)} sin COot 

from (4.14a) with k =  1, and recalling (4.11) and the transformation Uo, k _= 
P%o,k, U k -  P%k. Similarly, for k = 2 

Epo{y2(t)} =�89 2 Re{v2(Po, rl)} cos(2a)ot) 

- p o  2Im{v2(po rl)}sin(2COot)]+l 2, , iPo%,2(Po, ~1) (5.7) 

The numerical implementation of systems (4.14a) was done by using 
an implicit scheme of f inite differences, namely the Crank-Nicholson 
scheme. 
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The choice of Pmax must be such that we can compute good, accurate 
values of Vo, kNL at p = Po, up to some time "~max = T,  within a certain fixed 
error. In fact, as p =/)max approximates p = o% by reducing it we may 
expect loss of accuracy, as the time integration proceeds. 

For  a given P o -  p(0), we chose No and Ap = po/(No- 1), with Ap suf- 
ficiently small, for the purpose of accuracy. Then we determined Np and 
/)max = ( N p  - -  1) Ap, together with T, by experimentation. As we were con- 
tent to get good results up to p = P0, we reduced Np in such a way that the 
results were appreciably unchanged (within an error of 10 -5) up to p = P0. 
Up to N , =  1200 (corresponding to T=N~Ar,  Ar as below), this was 
largely true when Po = 1, No = 20, for N o = 60. Therefore we used a space 
mesh Ap ~-0.0526. However, as this experiment was conducted for a single 
set of parameters, we chose Np appreciably larger, Np =80,  so that 
Pmax~4.1578. Also, the quantities we computed were essentially zero 
before arriving at N~ -- 1200 time steps. 

By reducing the time mesh Ar from 0.4x 10 .3 to 0.4x l 0  -4 ,  n o  

appreciable improvement was observed in computing the first moments. 
The same happened reducing further AT to 0.1 x 10 -4 ,  for the second 
moments. We used Ar = 0.4 x 10 4 throughout the computations. It was 
noticed that Ar should be reduced when the nonlinearity parameter r/ is 
increased more and more and the integration is extended over long time 
ranges, to avoid numerical instability. 

Other parameters used were Ro = 1, cOo~o= 1, and e=0.1,  while 7/b 
and t / -  VoW/2b were given several values. 

We plotted the results in Figs. 1 9. In Figs. 1A, 2A, and 3A we plotted 
the modulus of the first moment, that of the time-fluctuating part in the 
second moment, and the phase-independent part of the second moment, 
respectively, for 7/b=0.1,  tl-VoW/2b=2. These quantities are v NL, V N L  2 , 

V0,2NL, in the notation of Sections 4 and 5 above. The quantities for the 
corresponding linear problem are also plotted, for comparison. 

In Fig. 4 we show the second moment (obtained from the quantities 
plotted in Fig. 2A, 3A), as well as the corresponding quantity for the linear 
problem. The modulation of the unperturbed oscillations by the random- 
ness is also evident. 

The function represented in Fig. 4(a) tends to a nontrivial limit, as 
(b/2) e2t--* 0% since 7/b< 1 and r / > 0  correspond to a case in which 
stationary solutions occur (cf. Section3). The function represented in 
Fig. 4(b) blows up in the limit, as was known for the linear random 
oscillator (cf. Ref. 6). We note also that the first moments are less damped 
than the second ones (Figs. 1A, 2A). 

In Fig. 1B, 2B, and 3B we plotted quantities like those in Figs. 1A, 2A, 
3A, respectively, but for y/b = 0.8, ~/= 2. The phase is also shown, while in 
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general we did not draw it, being of minor importance. There are, in fact, 
two time scales in the oscillator we have been studying, one according to 
the deterministic oscillations, and one characterizing the random fluc- 
tuations. They can be compared by the ratio 

~o o t 2o) o 
~ : =  - (5.8) 

~1 ha2 

("C 1 is nondimensional). Recalling (5.2) and using Ro = 1, COo~ o = 1, to com- 
pute ~oo/b=(v/b)/(7/c%), we get ~c=40/e 2. Choosing e=0.1  we get 
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~c = 4000, which means that 4000 deterministic oscillations take place on 
the time scale characteristic of the random fluctuations and therefore the 
phase changes due to the randomness are negligible. 

In Figs. 5-9, we show the phase-independent part of the second 
moment, Vo,2, for several values of the parameters y/b and r/. Figure 5(a) 
corresponds to 7 /b=5,  q = 2 .  Recalling that there exist (nontrivial) 
stationary distributions if and only if 7/b < 1 and t /> 0 (cf. Section 3), there 
is numerical evidence that, indeed, in such case they do not occur. 

The graph (b), in Fig. 5 represents the solution which obtains by 
setting q = - 2  in the previous case. It must be clear that, when /)max ~ oO, 
this will not give the solution to the original problem with ~/= -2 :  In fact, 
for t /< 0 uniqueness is lost, as was observed above. 

In Fig. 6, we present two cases with 7 / b = 0 . 8 : ( a ) q = 0 . 4  and 
(b) ~/= 10, where stationary distributions do occur. However this does not 
become clear in a relatively short range. 

In Fig. 7 things are much more transparent: In case (a), y/b = - 1  (cf. 
the classical van der Pol oscillator), r /=2,  there is a clear numerical 
evidence of the occurrence of stationary solutions. Fig. 7, (b) corresponds 
to y/b = 0.8, t /= -2 ,  and Fig. 7, (c) to 7/b= -1 ,  t /= -2 ,  but, as was obser- 
ved before, the cases with t /< 0 do not correspond to cases of interest. 
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Figure 8 shows the behavior of v0.2 for 7/b = 0.8, t /= 10, and finally 
Fig. 9 does the same for 7/b = -10 ,  t /=  10. 

From the graphs in Figs. 6-9 we can see that stronger nonlinearity t/, 
with q > 0, "stabilizes" more (i.e., faster) the behavior. In fact it is the non- 
linearity which "saturates" the oscillations. On the other hand, negative 
values of 7 satisfy the condition required to have stationary distributions 
(for what concerns 7), and have the effect of raising the curves, (compare 
Fig. 7(b) with Fig. 7(c), and Fig. 8 with Fig. 9). In fact, y < 0 represents an 
amplification. 
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